Metamind neural machine translation system for wmt 2016

By James Bradbury

Neural Machine Translation (NMT) systems, introduced only in 2013, have achieved state of the art results in many MT tasks. MetaMind’s submissions to WMT ’16 seek to push the state of the art in one such task, English→German newsdomain translation. We integrate promising recent developments in NMT, including subword splitting and back-translation for monolingual data augmentation, and introduce the Y-LSTM, a novel neural translation architecture.

Citation credit

If you reference this paper in published work, please cite:

We use cookies to make interactions with our websites and services easy and meaningful, to better understand how they are used and to tailor advertising. You can read more and make your cookie choices here. By continuing to use this site you are giving us your consent to do this.